A Place for Mom
Call us

2016 Family Quality of Life Study: Technical Report

Ben Hanowell
By Ben HanowellOctober 6, 2016

[toc]

Direct questions about the 2016 Family Quality of Life Survey to aplacefordata@aplaceformom.com or @APlaceforData on Twitter.

Introduction

A Place for Mom is North America’s largest senior living referral service. Private-pay assisted living communities made up over half of our move-ins between 2012 and 2015. There is much debate among researchers, policymakers, and families about the benefits of private-pay assisted living to seniors and their families. We designed a Family Quality of Life Survey (FQLS) to measure how moving to an assisted living community affects the quality of life of the senior who moves and of their family member who helps them move. Here we describe the methods of the survey and its key results.


We found moving to an assisted living community is associated with greater overall quality of life for both the senior and family member. The move is also associated with greater quality of life across a range of dimensions including but not limited to: the senior’s nutrition and social well-being; the family member’s level of stress about the senior; and the quality of the relationship between the senior and their family member.

Methods

Survey Instrument

Measuring the Assisted Living Effect

Because we did not have the resources to do a longitudinal analysis, we rely on two less direct survey methods:

  • Case/control study comparing families who moved into an assisted living community to those still actively searching for a senior living option
  • Retrospective assessment of change in quality of life for families who moved into an assisted living community

Measuring Family Member Quality of Life

We asked both moved-in and actively-searching families to rate the following aspects of their quality of life over the last three months on a five-point scale from (in most cases) “Very Good” to “Very Bad.” Alternative scales are noted where applicable.

  • Overall quality of life
  • Diet and exercise level (five-point scale from “Very Healthy” to “Very Unhealthy”)
  • Financial well-being
  • Social life

We also asked moved-in families to rate how those aspects of their quality of life had changed compared to the year before the senior moved into assisted living. Again we used a five-point scale from “Much Better” to “Much Worse” (or “Much Healthier” to “Much Less Healthy” for diet and exercise level.

Measuring Quality of Relationship with Senior

Again for both types of family, we asked about the following aspects of their relationship with the senior over the last three months. Alternative scales are noted where applicable; otherwise the five-point scale goes again from “Very Good” to “Very Bad.”

  • Quality of time spent with senior
  • Impact of caregiving on work (five-point scale from “No Impact on Work” to “Severe Impact on Work”)
  • Stress felt about senior (five-point scale from “Very High” to “Very Low”)

We also asked moved-in families how these factors changed compared to the year before the senior moved into assisted living, again using the five-point “Much Better” to “Much Worse” scale.

Measuring Senior’s Quality of Life

We also asked both types of family about the following components of the senior’s quality of life over the last three months. Family members rated each on a five-point scale from “Very Good” to “Very Bad.”

  • Overall quality of life
  • Social life
  • Nutrition
  • Physical health
  • Emotional health

Again, we asked moved-in families to rate how these quality of life components had changed compared to the year before the senior moved into assisted living.

Perception of Senior Living Communities

We asked families the following questions about their perception of senior living communities before and after moving in:

  • “Fill in the blank. At the time of calling A Place for Mom, your senior family member(s) would rather __________ if they could not live on their own.” This question is identical to a question asked in a Pew Research survey of older adults with the possible answers being:
    • Stay in home, but have someone there to care for them
    • Move into an assisted living facility
    • Move in with a family member
    • Move into a nursing home
  • “Before you called A Place for Mom, did anything cause you to delay your search for senior living? (Check all that apply.)” The possible answers are:
    • My senior family member did not want to move from their home
    • I didn’t want to put them in one of “those places”
    • We couldn’t find anything affordable
    • It was hard to find information about senior living communities
    • Family could not agree on best option
  • Questions for moved-in families only:
    • “Given what you know now, if you could go back to before your senior family member(s) moved into long-term senior living, would you have…” with possible answers:
      • …started looking for long-term senior living sooner
      • …started searching for senior living exactly when I did the first time
      • …waited longer to start searching for a senior living opportunity
      • …never have looked into senior living in the first place
    • “(Optional) In 3-4 sentences, describe how senior living has exceeded your expectations.”
    • “(Optional) In 3-4 sentences, please describe how senior living has failed to meet your expectations.”

Demographic Questions

We asked the following demographic questions of respondents, which were taken from the list of SurveyMonkey certified questions:

  • Possible responses unchanged from SurveyMonkey certfified question:
    • “What is your age?”
    • “What is your gender?”
    • “Which race/ethnicity best describes you? (Please choose only one.)”
  • “Which of the following best describes your current occupation?” (added “Retired” option to the SurveyMonkey certified question options)

Closing Questions

We asked respondents if they had any trouble understanding the survey (possible answers were none, some, or a lot). We also asked respondents if we could contact them in a follow-up survey on this topic.

Survey Delivery Method

We only had resources for an online survey. Because many seniors would not be inclined to respond to an online survey, we built an instrument for family members who called A Place for Mom on behalf of a senior family member.  We did not ask seniors about their own quality of life; instead we asked their family members to answer questions about the senior.

Survey Validation

The survey instrument was internally validated through conversations with APFM VP of Partner Services Dan Willis, who has many years of experience in the senior living industry. Mark Scott from Sage Projections consulted with us on question design. A Place for Mom blog editor Gerard Gravallese edited the survey for content and clarity.

Other Survey-Design Documentation

Survey scripts are available in PDF format upon email request to aplacefordata@aplaceformom.com.

Data Collection

Initial Sampling Frame

Following are the constraints placed on the sampling frame as encoded in the query to the A Place for Mom transaction database for moved-in and actively-searching families.

  • Moved-in families only:
    • Contacted A Place for Mom on or after 1 May 2015
    • Moved into an assisted living community from 1 May 2015 through 31 May 2016
  • Actively-searching families only:
    • Open inquiry at time of query
    • Contacted A Place for Mom between 1 August 2012 and 31 July 2016
  • Known, non-self relationship by blood or marriage to the respondent
  • Known age greater than or equal to 45 (no attempts made to correct)
  • Known resident “gender” (male, female, couple)
  • Known resident living situation
  • Stated family budget not “$4000 and under”, which is a rare (before 2012), redundant and deprecated option
  • Primary financial option neither social security nor subsidized housing, which are rare and not serviced by our Advisors anymore anyway
  • Primary desired state must be in US or primary desired zip must be valid and known
  • Contact state must be in US or contact zip must be valid and known
  • New inquiry, not re-engagement or repeat business
  • Known contact email

This query served as the initial sampling frame, which we then used to build a sample that matches moved-in families to similar actively-searching families. Because we are a privately held company, we cannot disclose the size of the initial sampling frame.

Sampling Balancing

To make more confident causal claims based on case/control data about how moving to assisted living influences quality of life, we used nearest-neighbor propensity-score matching. This method attempted to match each member of a moved-in sample to a similar member of the initial actively-searching sampling frame. The goal was to maximize the balance of the sample, i.e., make the distribution of propensity scores as similar as possible between cases and controls.

We successfully balanced the propensity scores of the matched sample based on a visual inspection of the histogram of post-matching propensity scores comparing cases to controls. The result is a matched sample of 4,133 moved-in families matched to an equal number of actively-searching families for a total of 8,266 potential respondents. Below we describe the steps in the matching procedure.

    Step 1: Identify Matching Predictors to Use in Predicting Propensity Scores

    The target propensity scores estimate the probability that a family is a moved-in family given a set of predictors. The predictors we used are:

    • Resident’s age in years
    • Resident’s “gender” (male, female, or couple)
    • Resident’s current living situation
    • Resident’s veteran status
    • Contact family member’s relation to prospective resident
    • Location predictors:
      • Primary desired state for senior living
      • State where contact family member resides
    • Prospective resident’s care needs:
      • Toileting assistance
      • Mobility assistance
      • Combative and/or wandering status
      • Diabetic care needs
      • Memory diagnosis/issues
      • Whether resident currently in a rehabilitation or nursing facility
      • Medication management needs
    • Financial information
      • Stated monthly budget for senior housing and care
      • Whether primary financial option was stated (unknown versus private pay or long-term care insurance)
      • Whether prospective resident has:
        • 401k
        • Home to sell
        • Long-term care insurance
        • Private health insurance
        • Savings
        • Monthly income
        • Stocks, bonds, or CDs
        • Veterans Affairs benefits
        • Other assets

    For predictors that were allowed to be missing when assembling the initial sampling frame, a new category “Unknown” was added.

    We chose these predictors because: (a) they are nearly all of the predictors available in our database, and (b) they are predictors we know are likely to be important to predicting move-ins based on prior analysis at A Place for Mom (i.e., machine-learning models that predict the probability of a move and the time elapsed from contact to move-in), and that are often available for actively-searching leads even if they have not yet been referred to a senior living community.

      Step 2: Build Propensity-Score Model

      The model must balance the need for capturing possibly complex interactions among predictors against the desire to avoid over-fitting, and should be optimized with respect to a sample-balance criterion. We used the twang package for the R statistical programming language to optimize a gradient-boosted trees model (as implemented in the gbm package, which twang extends). The model predicts the conditional probability of being a moved-in family given the predictors outlined in Step 1. We optimized the model’s tuning parameter (number of trees) with respect to the mean of the absolute standardized bias across the predictors. We tested a grid of equidistant values between 1 and 10,000 for number of threes. Because we are interested in the effect of moving in on families who actually moved in, the absolute standardized bias was calculating based on the average treatment effect among the treated.

        Step 3: Acquire Propensity Scores

        After tuning the propensity-score model in Step 2, we use the tuned model to predict the propensity scores of every potential respondent in the initial sampling frame, regardless of their move-in status. That is, each potential respondent to the survey is assigned a probability based on the model that they are a moved-in family.

        Step 4: Nearest-neighbor Matching

        Finally, we use a nearest-neighbor matching algorithm implemented in the MatchIt package for R, for which we use the propensity scores computed in Step 3 as the distance metric.

        Step 5: Assess Balance Attainment

        To assess balance, we looked at the histograms comparing the propensity scores of moved-in and actively-searching families both before and after matching. If the histograms after matching look similar across move-in status, the matching procedure is successful. The more similar the histograms, the better.

          Survey Waves and Response Rate Optimization

          We selected at random about two-thirds of the matched sample, about equally split between actively-searching and moved-in families, to contact for the Family Quality of Life Survey. The rest were reserved for other survey activities this year. The sampling was split into three waves: a small pilot wave (sample size of 497) to get an early read on response rate, followed by two larger waves (sample size of 2,504 and 2,503 respectively). Within each survey wave and for each family type (moved-in versus actively-searching), there were three separate email survey collectors that used one of the following email subject lines:

          • A Place for Mom survey about your quality of life
          • [A Place for Mom] Your family’s quality of life – A quick survey
          • [A Place for Mom] Your senior living experience – A quick survey

          The pilot wave spread the sample equally across the three alternative subject lines. We then used methods developed at Google by Steven L. Scott to estimate the probability that each subject line had the greatest response rate. In the next wave, we allocated the sample in proportion to these probabilities, and did the same for the final wave of the survey. A full analysis of response rates can be done upon request. Here we report the overall response rate (using only 100% completed surveys), which is about 6% after rounding to the nearest whole percent. The final completed-survey sample size is 294 completed surveys, 73% of which are moved-in families.

          Survey waves were run for three days to a week each before sending a reminder, and then run for an additional 2-4 days before starting up the collectors for the next wave. All collectors remained open from the first collector’s open date (3 August 2016) to the close of the survey (25 August 2016).

            Post-survey Variable Transformation

            Because the extreme high and low responses to quality-of-life and previous-perception variables tended to have low cell counts, we collapse the top and bottom two categories for analysis. An added benefit to collapsing the outcome variables is that the results are easier to interpret.

            Statistical Analysis Methods

            Perception of Senior Living Before Calling A Place for Mom

            One of our questions about the senior’s perception of senior living communities matches a question asked in a Pew Research survey of older adults. To demonstrate that the seniors in our sample are similar to those in a scientific poll from a well-respected polling firm, we estimate the posterior distribution of the share of respondents answering in a particular way using independent Dirichlet-multinomial models with uniform prior distributions (i.e., prior concentration parameters all equal to one), one for each of the two surveys. Then we plot the posterior means and 95% credible intervals of the predicted shares.

            In addition to measuring seniors’ perceptions of senior living using the Pew survey question, we use independent beta-binomial models, again with uniform distributions, to estimate the share of respondents who claimed each of the five possible causes for delaying their search for senior living.

            Finally, we use a Dirichlet-multinomial model with uniform prior to measure the share of respondents with positive, lukewarm, negative, or no opinions in response to the question about their previous perception about senior living before calling A Place for Mom.

            Simple Bayesian Estimation of Move-in Status Effects

            Ultimately, we need to look at how quality-of-life metrics vary together as well as with predictors from the survey and the APFM database, but our first analysis builds simple models to:

            • Estimate overall changes in quality of life for moved-in families
            • Estimate differences in quality of life between moved-in and actively-searching families.

            These estimates are based on independent Dirichlet-multinomial models with flat uniform priors, from which we derive 95% credible intervals for the share of respondents in each category (and, where applicable, family type) for each question, and where applicable by move-in status. For this exercise, we use the collapsed versions of the quality-of-life outcome variables, but only after simulating the posterior distributions of the share of respondents in the original categories.

            Latent Class Regression Analysis

            Using collapsed outcome categories as described in a previous section, we use the flexmix package in R to build polytomous latent class regression models to see how factors like family-member age, finances, care needs, and ethnicity influence change in quality of life after moving to assisted living. We also add current quality of life as a potential predictor. The objective of the analysis is two-fold:

            • Identify discrete groups of respondents based on their responses to each of the quality-of-life questions
            • See how predictors influence the odds of being in a particular group

            Only variables with sufficient variation within move-in status are chosen as potential predictors. When fitting models, we consider all possible models with main effects and (where applicable) first-order interactions with move-in status, insofar as those models are computationally tractable (i.e., the EM algorithm that the packages uses converges, the algorithm runs without error, etc.). We also fit intercept-only models. We use flexmix‘s built-in multinomial regression specification (implemented with function FLXMRmultinom) as the driver of the latent class regression.

            The number of groups and the final predictors are chosen using two criteria:

            • Bayesian Information Criterion (BIC) – Models with lower BIC are preferred to models with higher BIC
            • Interpretability and parsimony – The classes in the model should be relatively easy to interpret; when BIC is similar (within two BIC points) for two competing models, the simpler model (in terms of number of classes and number of predictors) are preferred

            We choose only one final model but retain the BIC values of each competing model.

            Results

            Sample Balancing

            The optimal propensity-score model was based on 4,846 tree-building iterations. The five predictors with highest relative importance averaged across trees were (in descending order): whether resident living in rehab/nursing facility, resident’s current living situation, desired state, contact’s state of residence, and the family’s stated senior-living budget.

            Figure 1 compares the propensity-score distributions of moved-in and actively-searching families before and after nearest-neighbor matching. Note the considerable increase in balance evident in the greater similarity in histogram shape after matching. The matching process yielded 4,132 moved-in families matched to 4,124 actively-searching families for a total of 8,256 families. The section on survey waves and response rates describes how roughly two-thirds of this sample was split into three separate waves.

            Figure 1: Survey sample balance attainment

            Previous Perception of Senior Living

            Figure 2 shows that the FQLS sample is very similar to the Pew Research sample in terms of the ordering of preferences and their relative weights. The gray lines represent the 95% credible intervals. Both surveys show that about three out of five seniors would rather stay at home with someone to care for them if they could not live on their own. Only about one in five families would move into an assisted living facility. One difference between the FQLS and Pew samples is that the latter estimates a larger difference in share of respondents who would move into an assisted living facility versus with a family member. Another is that the Pew Survey estimates a much larger proportion who who rather move into a nursing home, although for both surveys that share is quite small.

            Figure 2

            Figure 3 shows the proportion of families who checked each of the five possible reasons they delayed their senior living search. Three out of four families delay their search because the senior didn’t want to move. Eighteen percent of families delay their search because they didn’t want their senior loved one to live in of “those places.” Eighty-five percent of families checked one or both of those options.

            Figure 3

            Figure 4 shows that as many families have lukewarm feelings about senior living before calling as have positive feelings. Lukewarm and negative sentiment together represent half of families.

            Figure 4

            Simple Bayesian Estimation of Move-in Status Effects

            For each quality-of-life measure, we plot the comparison between moved-in and actively-searching families next to the distribution of moved-in families’ responses to questions about change in quality of life. Then we interpret the results with reference to additional summary statistics. The bars in the plots represent the posterior mean share of respondents. The light gray lines represent the 95% credible intervals.

            Senior Quality of Life

            The results below suggest that overall quality of life improves greatly for seniors when they move to assisted living. The effects are greatest and most certain for the quality of the senior’s nutrition and their social well-being. Less so for social well-being and physical health.

            Senior Overall Quality of Life

            Seniors who moved are 70% more likely to report a good or very good overall quality of life than seniors who are still searching. They’re also 65% less likely to report a bad or very bad overall quality of life. Seventy-three percent of families who have moved report improvement in the senior’s overall quality of life, which is five times as many families who see overall quality of life worsen and six times as many families who see no change. Not only are seniors much more likely to see overall quality of life improve than worsen; they are also much more likely to see it improve than stay the same.

            Figure 5

            Figure 6

            Senior Nutrition

            Seventy-eight percent of families who moved in report good or very good nutrition for the senior and are over 1.5 times as likely to do so than actively-searching families. They’re also nearly 40% less likely to report bad or very bad nutrition compared with actively-searching families. Seventy-three percent of moved-in families report improvement in the senior’s nutrition, which is eight times as many as families who say nutrition worsened and four times as many as who say nutrition remained the same.

            Figure 7

            Figure 8

            Senior Social Life

            Forty-eight percent of moved-in families report good or very good social well-being for the senior, which is over twice as many as the actively-searching families who do so. Moved-in families are also nearly 70% less likely to report bad or very bad social well-being compared to actively-searching families. Meanwhile, 64 percent of moved-in families report improvement in the senior’s social well-being, which is over four times as many as who say social well-being worsened and about three times as many as who say it stayed the same.

            Figure 9

            Figure 10

            Senior Emotional Well-being

            The differences between moved-in and actively-searching families are not as clear when it comes to the senior’s emotional well-being. Yet moved-in families are over twice as likely to see emotional well-being improve than worsen, and nearly 1.5 times as likely to see it improve than stay the same.

            Figure 11

            Figure 12

            Senior Physical Health

            The effect of moving to senior living on the senior’s physical health is neither as large nor as statistically certain as for other measures, such as overall quality of life and nutrition. In fact, it’s highly uncertain whether seniors are more likely to see physical health improve than stay the same. However, roughly twice as many respondents report better physical health for the senior than worse.

            Figure 13

            Figure 14

            Family Member Quality of Life

            The benefit of moving to assisted living on family members’ overall quality of life is less certain than it is for the senior. Yet there is moderate evidence that family members of moved-in seniors feel their quality of life improve. Moreover, there is strong evidence that the move alleviates the stress that family members feel about the senior. In addition, many families feel their social well-being improve, their diet and exercise level become more healthy, or caregiving have less of an impact on their ability to work. Financial well-being is most likely to stay the same after moving.

            Family Member Overall Quality of Life

            The comparison of overall quality of life between moved-in and actively-searching family members is uncertain. Yet 60 percent of family members of seniors who moved feel their overall quality of life improved, which is four times as many as who felt it worsen and twice as many as who felt it stayed the same.

            Figure 15

            Figure 16

            Family Member Stress About Senior

            Actively-searching families are 1.6 times more likely to feel high or very high levels of stress about the senior when compared to moved-in families. Moved-in families, on the other hand, are over five times more likely to feel low or very low levels of stress about the senior compared to actively-searching families. Sixty-four percent of moved-in families feel less stress about the senior than before the move, which is three times as many as those who feel stress increase. Family members are also 1.5 times as likely to see stress about the senior improve as increase or stay the same.

            Figure 17

            Figure 18

            Family Member Social Well-being

            The difference in social well-being between moved-in and actively-searching families is unclear. Moreover, the majority (63 percent) of family members of seniors who move in feel no change to their social well-being. Yet nearly a quarter of family members feel their social well-being improve, nearly twice as many as those who feel it worsen.

            Figure 19

            Figure 20

            Family Member Diet and Exercise

            There is no clear distinction between moved-in and actively-searching families in the family member’s diet and exercise level. The majority (60 percent) of families of seniors who move report no change in their diet or exercise levels. Yet nearly a third of moved-in families see improvement, which is over three times as many as those who feel their diet and exercise level get less healthy after the move.

            Figure 21

            Figure 22

            Caregiving Impact on Family Member’s Ability to Work

            There is no measurable difference between moved-in and actively-searching families on self-reported impact of caregiving on the family member’s ability to work. Yet 39% of moved-in families see improvement on this measure compared to only 8% who feel greater impact of caregiving on work after the move.

            Figure 23

            Figure 24

            Family Member Financial Well-being

            There is no measurable difference in financial well-being between moved-in and actively-searching families. Moreover, 70% of moved-in families feel no change to their financial well-being, and roughly equal shares of families feel it worsen (14%) or get better (15%).

            Figure 25

            Figure 26

            Quality of Relationship Between Family Member and Senior

            There is some evidence that moved-in families may be more likely to have a good or very good relationship with the senior because there are fewer who report that the quality of the relationship is fair. Yet the magnitude of this effect is uncertain. On the other hand, half of families report a better relationship with the senior, which is twice as many as those who see no change and five times as many as those who see the relationship worsen.

            Figure 27

            Figure 28

            Latent Class Analysis

            We tested all possible latent class models that included demographic variables, previous perception of assisted living, number of types of assistance with daily activities needed, and stated family budget. For the analysis of change in quality of life, we also included current quality of life as a predictor. For the analysis of current quality of life, we also tested all possible models containing at last move-in status and at least one interaction of move-in status with another variable. For each regression specification, we tested models with between one and five latent classes.

            Intercept-only models with two latent classes had the optimal BIC scores for both current quality of life and change in quality of life. We do not report the current-quality-of-life model here. Instead, we focus on how moved-in families can be grouped based on their responses to questions about changes in their quality of life.

            Broadly speaking, the two latent classes are characterized by the propensity of their members to report improvement in quality of life for both the senior and the family member. Consistent with the simpler analyses in the previous section, positive outcomes for the senior are more common than for the family member even in the positive-outcome group.

            Figure 29 shows the share of respondents in a given group who give a particular rating on each question about the senior’s quality of life. Note how nearly all of the members of the positive-outcome group report improvement in the senior’s overall quality of life. Consistent with the simpler analyses in the previous section, nutrition and social well-being are also more likely to improve for the positive-outcome group. Interestingly, half of the members of the negative-outcome group report improvement in the senior’s nutrition.

            Figure 29: Latent class analysis – share of responses by latent class and senior-outcome variable

            Figure 30 shows the breakdown by latent class for questions about the senior’s family member. More than three quarters of the positive-outcome group report improvement in the family member’s overall quality of life. An even larger number of these families report improvement in the level of stress they feel about the senior, and three in four family members report improvement in the quality of their relationship with the senior.

            Figure 30: Latent class analysis – share of responses by latent class and family-member-outcome variable

            Discussion

            Based on these results, we can come to the following conclusions about how a move to assisted living influences quality of life.

            • Seniors say they would rather stay at home but are better off once they move to assisted living, especially when it comes to the quality of their nutrition and social well-being.
            • The effect of moving to assisted living on the seniors’ family members’ overall quality of life is less clear, but improvement in the level stress felt about the senior is especially evident.
            • A plurality of family members feel their overall quality of life, diet and exercise level, social well-being, and relationship with the senior improve after a move to assisted living.
            • Our quality-of-life measures successfully separate moved-in families into two groups: one with more positive outcomes than the other. Families are twice as likely to be in the positive-outcome group.

            It makes sense that a move to assisted living is more likely to improve the senior’s quality of life than their family member’s. After all, the primary goal of an assisted living community is to help seniors thrive despite their need for assistance with activities of daily living and advancing age. Benefits to the senior’s family are secondary.

            The task now is to repeat this survey in subsequent years to increase sample size. An increased sample size would allow us to assess how the impact of moving to assisted living varies by caregiver demographics, senior’s care needs, financial situation, living situation, previous perception of senior living, and other variables. Doing so will help consumers, policymakers, and the industry understand which consumer segments benefit most and least from a move to assisted living.

            Related Articles:

            Ben Hanowell
            Author
            Ben Hanowell
            Sign up for our newsletter
            Get insights and articles in your inbox.

            Please enter a valid email address.

            Contact Us
            701 5th Ave #3200, Seattle, WA 98104

            A Place for Mom is paid by our participating communities, therefore our service is offered at no charge to families. Copyright © 2021 A Place for Mom, Inc. All Rights Reserved. Privacy & Terms. Do Not Sell My Personal Information.